next #
Advances through the search results and returns the next page of items.
Arguments #
Future<List<dynamic>> next()
Returns #
Returns a SearchResult
object, or null
if no more pages are available.
Pagination strategies #
Depending on the arguments given to the initial search, the next
method will pick one of the following strategies, by decreasing order of priority.
Strategy: scroll cursor #
If the original search query is given a scroll
parameter, the next
method uses a cursor to paginate results.
The results from a scroll request are frozen, and reflect the state of the index at the time the initial search
request.
For that reason, this method is guaranteed to return consistent results, even if documents are updated or deleted in the database between two pages retrieval.
This is the most consistent way to paginate results, however, this comes at a higher computing cost for the server.
When using a cursor with the scroll
option, Elasticsearch has to duplicate the transaction log to keep the same result during the entire scroll session.
It can lead to memory leaks if a scroll duration too great is provided, or if too many scroll sessions are open simultaneously.
You can restrict the scroll session maximum duration under the services.storage.maxScrollDuration
configuration key.
With the ElasticSearch Query DSL syntax.
final List<Map<String, dynamic>> documents = [];
for (var i = 0; i < 100; i++) {
documents.add({ '_id': 'suv_no${i}', 'body': { 'category': 'suv' } });
}
await kuzzle.document.mCreate('nyc-open-data', 'yellow-taxi', documents,
waitForRefresh: true
);
var res = await kuzzle.document.search(
'nyc-open-data',
'yellow-taxi',
query: { 'query': { 'match': { 'category': 'suv' } } },
scroll: '10s', size: 5);
// Fetch the matched items by advancing through the result pages
final result = [];
while (res != null) {
result.addAll(res.hits);
res = await res.next();
}
With the Koncorde Filters DSL syntax.
final List<Map<String, dynamic>> documents = [];
for (var i = 0; i < 100; i++) {
documents.add({ '_id': 'suv_no${i}', 'body': { 'category': 'suv' } });
}
await kuzzle.document.mCreate('nyc-open-data', 'yellow-taxi', documents,
waitForRefresh: true
);
var res = await kuzzle.document.search(
'nyc-open-data',
'yellow-taxi',
query: { 'query': { 'equals': { 'category': 'suv' } } },
scroll: '10s', size: 5, lang: 'koncorde');
// Fetch the matched items by advancing through the result pages
final result = [];
while (res != null) {
result.addAll(res.hits);
res = await res.next();
}
Strategy: sort / size #
If the initial search contains sort
and size
parameters, the next
method retrieves the next page of results following the sort order, the last item of the current page acting as a live cursor.
To avoid too many duplicates, it is advised to provide a sort combination that will always identify one item only. The recommended way is to use the field _uid
which is certain to contain one unique value for each document.
Because this method does not freeze the search results between two calls, there can be missing or duplicated documents between two result pages.
This method efficiently mitigates the costs of scroll searches, but returns less consistent results: it's a middle ground, ideal for real-time search requests.
Strategy: from / size #
If the initial search contains from
and size
parameters, the next
method retrieves the next page of result by incrementing the from
offset.
Because this method does not freeze the search results between two calls, there can be missing or duplicated documents between two result pages.
It's the fastest pagination method available, but also the less consistent, and it is not possible to retrieve more than 10000 items using it.
Above that limit, any call to next
throws an Exception.
With the ElasticSearch Query DSL syntax.
final List<Map<String, dynamic>> documents = [];
for (var i = 0; i < 100; i++) {
documents.add({ '_id': 'suv_no${i}', 'body': { 'category': 'suv' } });
}
await kuzzle.document.mCreate('nyc-open-data', 'yellow-taxi', documents,
waitForRefresh: true
);
var res = await kuzzle.document.search(
'nyc-open-data',
'yellow-taxi',
query: { 'query': { 'match': { 'category': 'suv' } } },
from: 1, size: 5);
// Fetch the matched items by advancing through the result pages
final result = [];
while (res != null) {
result.addAll(res.hits);
res = await res.next();
}
With the Koncorde Filters DSL syntax.
final List<Map<String, dynamic>> documents = [];
for (var i = 0; i < 100; i++) {
documents.add({ '_id': 'suv_no${i}', 'body': { 'category': 'suv' } });
}
await kuzzle.document.mCreate('nyc-open-data', 'yellow-taxi', documents,
waitForRefresh: true
);
var res = await kuzzle.document.search(
'nyc-open-data',
'yellow-taxi',
query: { 'query': { 'equals': { 'category': 'suv' } } },
from: 1, size: 5, lang: 'koncorde');
// Fetch the matched items by advancing through the result pages
final result = [];
while (res != null) {
result.addAll(res.hits);
res = await res.next();
}